Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials.

نویسندگان

  • Minkee Choi
  • Freddy Kleitz
  • Dinan Liu
  • Hee Yoon Lee
  • Wha-Seung Ahn
  • Ryong Ryoo
چکیده

Free-radical polymerization inside mesoporous silica has been investigated in order to open a route to functional polymer-silica composite materials with well-defined mesoporosity. Various vinyl monomers, such as styrene, chloromethyl styrene, 2-hydroxyethyl methacrylate, and methacrylic acid, were polymerized after impregnation into mesoporous silicas with various structures, which were synthesized using polyalkylene oxide-type block copolymers. The location of the polymers was systematically controlled with detailed structures of the silica framework and the polymerization conditions. Particularly noteworthy is the polymer-silica composite structure obtained by in situ polymerization after the selective adsorption of monomers as a uniform film on silica walls. The analysis of XRD data and the N(2) adsorption isotherms indicates the formation of uniform polymer nanocoating. The resultant polymer-silica composite materials can easily be post-functionalized to incorporate diverse functional groups in high density, due to the open porous structure allowing facile access for the chemical reagent. The fundamental characteristics of the composite materials are substantiated by testing the biomolecule's adsorption capacity and catalytic reactivity. Depending on the structure and composition of polymers, the resultant polymer-silica composite materials exhibit notably distinct adsorption properties toward biomolecules, such as proteins. Furthermore, it is demonstrated that the nanocoatings of polymers deposited on the mesopore walls have remarkably enhanced catalytic activity and selectivity, as compared to that of bulk polymer resins. We believe that, due to facile functionalization and attractive textural properties, the mesoporous polymer-silica composite materials are very useful for applications, such as adsorption, separation, host-guest complexes, and catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

متن کامل

Rsc_cc_c0cc01746a 1..3

Mesoporous silica materials have been utilized for various applications (catalysis, sensing, drug delivery, adsorption and separation) due to their uniform mesoporous features as well as high surface areas. When organic polymer layers are introduced to the mesopore walls, the physicochemical properties as well as surface nature of the silica (e.g. hydrophilicity and surface charge) can be alter...

متن کامل

Silica-based mesoporous organic-inorganic hybrid materials.

Mesoporous organic-inorganic hybrid materials, a new class of materials characterized by large specific surface areas and pore sizes between 2 and 15 nm, have been obtained through the coupling of inorganic and organic components by template synthesis. The incorporation of functionalities can be achieved in three ways: by subsequent attachment of organic components onto a pure silica matrix (gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 6  شماره 

صفحات  -

تاریخ انتشار 2005